

PATENT NO: ZL 201830752872.2 CE certification: AT011611743E FCC certification: AT011611744E RoSH certification: 18300RC20410801

V1.8

HIGH ACCURACY DIGITAL TYPE MODBUS INCLINOMETER WITH FULL TEMP-COMPENSATION ACA616T&ACA626T

Technical Manual

RION QUALIFICATION CERTIFICATION

• Quality management system certification: IATF16949: 2016 (Certificate No.: T178487)

 GJB9001C-2017 Standard Weaponry Quality Management System Certification (Registration number: 02622J31799R0M)

Intellectual property management system certification: GB/T29490-2013 standard (Certificate No.: 41922IP00281-06R0M)

• High-tech Enterprise (Certificate No.: GR201844204379)

• ShenZhen Professional Dedicated Unique Innovative Enterprice(No.: SZ20210879)

• CE certification: AT011611743E

• FCC certification: AT011611744E

RoHS certification: 18300RC20410801

• China National Intellectual Property Appearance Patent (Patent No.: ZL 201830752872.2)

Revision date: 2024-3-29

Note: Product functions, parameters, appearance, etc. will be adjusted as technology upgrades. Please contact our pre-sales business for confirmation when purchasing.

GENERAL DESCRIPTION

ACA616T/ACA626T is a full temperature compensation high precision single / dual axis MODBUS digital output type tilt sensor developed by RION Technology on the basis of high precision tilt platform. Its excellent temperature stability can be used in a wide temperature environment of -40~85 °C It maintains high measurement accuracy and is more suitable for long-term field equipment monitoring and leveling. In addition, the system has a built-in high-precision 24it A/D differential converter, and through the fifth-order filtering algorithm, it can measure the tilt and pitch angle of the sensor output relative to the horizontal. Output interface RS485, RS232, TTL optional. The characteristics of non-contact installation make the product have strong system integration, only need to fix the sensor on the surface of the measured object with screws, the attitude and inclination of the object can be automatically calculated, simple to use, no need to retrieve the relative changes Installed on both sides. It has strong resistance to external electromagnetic interference and strong ability to withstand shock and vibration. It has a great competitive advantage among domestic counterparts, and is specifically used in the industrial fields required by high-end users.

FEATURES

- ★ Single / dual axis inclination measurement
- ★ Measure Range :±1~±90° optional
- **\star** Wide temperature working: -40~+85°C
- ★ Highly anti-vibration performance >2000g
- ★ Output mode RS232/RS485/RS422/TTLare optional ★ Size: 92×48×36mm

APPLICATION

- ★ Engineering vehicles automatic leveling
- ★ Laser equipment position
- ★ Underground drill posture navigation
- ★ Geological equipment inclined monitoring
- ★ Railway gauging rule , gauge equipment leveling

- ★ Wide voltage input: 9~36V
- ★ IP67 protection grade
- ★ Resolution: 0.001°
- ★ Water-proof air-plug
- ★ Bridge & dam detection
- ★ Medical facilities angle control
- ★ Precise machine tool level control

ACA616T/ACA626T	CONDITIONS PARAMETERS UNIT						
Measure range		±10	±30	±60	±90	0	
Measure axis		X/XY	X/XY	X/XY	X/XY	AXIS	
Resolution		0.001	0.001	0.001	0.001	٥	
Measure accuracy	@25°C	0.003	0.01	0.02	0.03	° (RMS)	
Zero Temp. coefficient	-40~+85 ℃	±0.0004	±0.0004	±0.000 4	±0.000 4	°/°C	
Sensitivity temp-coeffi	-40~+85 ℃	≤50	≤50	≤50	≤100	ppm/° C	
Power on time		0.5	0.5	0.5	0.5	S	
Response frequency			20Hz				
Output rate	5Hz、15Hz、35Hz、50Hz can be setting						
output signal	RS232/RS485/RS422/TTL						
Communication protocol		RION 68 pro	otocol / MC	DBUS pro	otocol		
EMC	ŀ	According to	EN61000	and GBT	17626		
MTBF		≥98	8000 hours	s/times			
Insulation Resistance			≥100MΩ	2			
Shockproof	100g	j@11ms、3	Axial Dire	ction (Half	Sinusoid)		
Anti-vibration	10grms、10~1000Hz						
Protection grade	IP67						
Cables	Standard 2m lo		sistant, wio mm aviatio			ded cable	
Weight		≤22	20g(without	cable)			

► SPECIFICATIONS

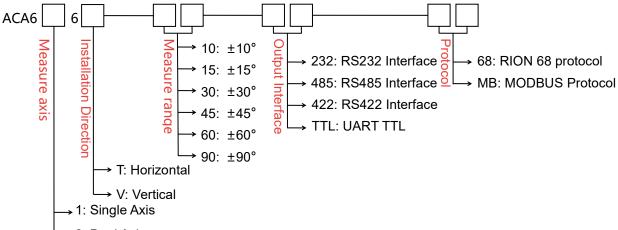
This performance parameter only lists the measurement ranges of ± 10 °, ± 30 °, ± 60 ° and ± 90 ° for reference. For other measurement ranges, please refer to the nearest parameter.

KEY WORDS:

Resolution: refers to the minimum change value of the measurand that can be detected and distinguished by the sensor within the measuring range.

Maximum absolute error of accuracy: refers to the maximum value between the measured value and the actual angle error when the product is measured at multiple angle points within the measuring range.

Root mean square error of accuracy: refers to the root mean square error between the measured value and the actual angle error when the product is within the measuring range and the angle is measured for many times (more than 16 times).

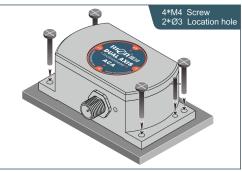

Zero temperature coefficient: It refers to the change rate of the indication value of the sensor relative to the normal temperature within its rated working temperature range under the zero value state.

Sensitivity temperature coefficient: refers to the change rate of the percentage of the full-scale indicated value relative to the full-scale indicated value at normal temperature with the temperature within the rated working temperature range of the sensor.

	•••••••					
PARAMETERS	CONDITIONS	MIN	STANDARD		MAX	UNIT
	Standard	9	12 24		36	V
Power supply	customized		Otl volt			V
Working current	12V		4	D		mA
	24V		2	2		mA
Working temperature		-40			+85	°C
Store temperature		-40			+85	°C

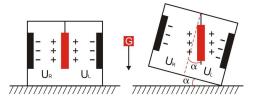
ELECTRONIC CHARACTERISTICS

ORDERING INFORMATION



 \rightarrow 2: Dual Axis

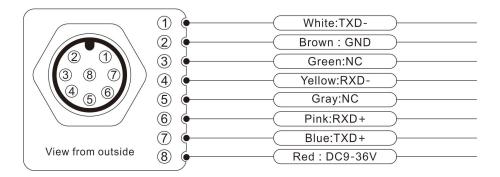
E.g:ACA616T-10--232--68: Single Axis/Horizontal /±10° measure range / RS232 output / RION 68 protocol .


MECHANICAL PARAMETERS

 Connectors: Air Plug Connector
 (1m Direct Leading Cable Can Be Customized)
 Enclosure Material : Aluminum Oxide
 Installation : 4*M4 Screws 2*3mm Plug Position(Optional)

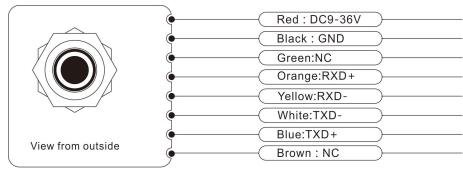
WORKING PRINCIPLE

Adopt imported core control unit and apply the principle of capacitive micro-pendulum. Using the principle of earth's gravity, when the tilting unit tilts, the earth's gravity will produce a gravitational component on the corresponding pendulum, and the corresponding electric capacity will change. By amplifying and filtering the electric capacity, the inclination is obtained after conversion.

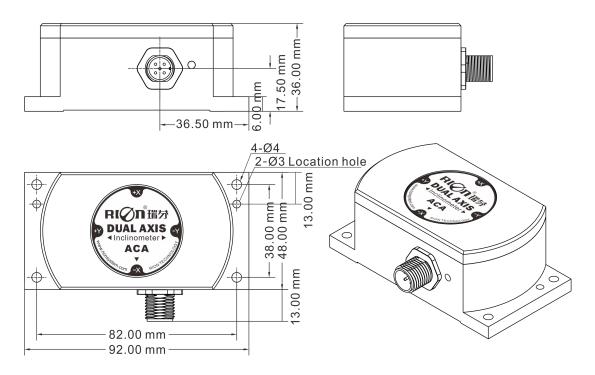

 $U_{\text{R}}, U_{\text{L}} \text{Respectively}$ is the pendulum left plate and the right plate corresponding to their respective voltage between theelectrodes, when the tilt sensor is tilted, $U_{\text{R}}, U_{\text{L}}$ Will change according to certain rules, so $f(U_{\text{R}}, U_{\text{L}})$ On the inclination of α function: $\alpha = (U_{\text{R}}, U_{\text{L}})$

► ELECTRICAL CONNECTION RS232 / RS485 Cable Wire Information

FUN	BLACK	WHITE	BLUE	BROWN	GRAY
COLOR FUNCTION	GND Power negative	Power TTL(RXD) TTL(TXD)		DC9~36V Power supply positive	FACTORY
INCLINOMETER	2 1 3 3 2 4 3 4	с• <mark>В</mark> с• (WH	N:DC9~36V • -P UE:TXD • ITE:RXD • CK:GND •	POWER+	
INCLINOMETER	2 1 3 3 4 3 4		N:DC9~36V •	POWER+	VER- 0 1 6 0 2 0 7 0 3 8 0 4 9 0 5


RS422 CABLE WIRE INFORMATION Connector With Cable Information

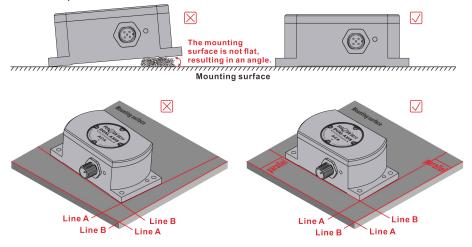
FUN	RED	BLUE	WHITE	PINK	YELLOW	BROWN
COLOR FUNCTION	DC9~36V Power supply positive	TXD+	TXD-	RXD+	RXD-	GND Power negative



FUN	RED	BLACK	WHITE	ORANGE	YELLOW	BLUE	
COLOR FUNCTION	DC9~36V Power supply Positive	GND Power Negative	TXD-	RXD+	RXD-	TXD+	
Positive Negative Red : DC9-36V Black : GND							

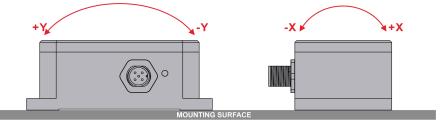
Direct Leading Cable Information

DIMENSION

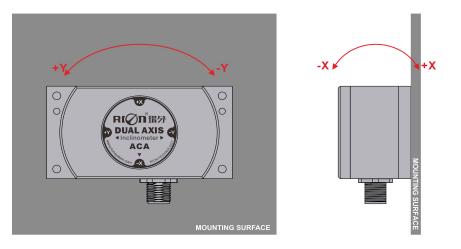

Dimension: L92×W48×H36mm Installation size: L82×W38×H6mm Mounting screws: 4 M4 screws/2 M3 dowel pins

PRODUCTION INSTALLATION NOTES

Please follow the correct way to install tilt sensor, incorrect installation can cause measurement errors, with particular attention to the "surface", "line" :


1) The Sensor mounting surface and the measured surface must be fixed closely, smoothly, stability, if mounting surface uneven likely to cause the sensor to measure the angle error.

2) The sensor axis and the measured axis must be parallel ,the two axes do not produce the angle as much as possible.



MEASURING DIRECTIONS

The installation must guarantee the product bottom is parallel to measured face, and reduce the influence of dynamic and acceleration to the sensor. This product can be installed horizontally or mounted vertically (mounted vertically selection must confirm before production), for installation please refer to the following scheme.

Horizontal installation

Vertical installation

RION PROTOCOL

1.DATA FRAME FORMAT

(8 bits date, 1 bit stop, No check, Default baud rate 9600)

ldentifier (1byte)	Date Length (1byte)	Address code (1byte)	Command Word (1byte)	Date domain	Check sum (1byte)
68					

Date format: hexadecimal

Identifier: Fixed68

Data length: From data length to check sum (including check sum) length

Address code: Accumulating module address, Default :00

Date domain will be changed according to the content and length of command word

Check sum: Data length, Address code, Command word and data domain sum, No carry.

Desc.	Meaning/Example	Description
0X04	Meanwhile read angle command E.g: 68 04 00 04 08	Data domain(0byte) No Data domain command
0X84	sensor data response Eg: 68 10 00 84 00 00 20 08 10 00 25 28 10 35 00 80 DE	 data field(9byte) 68 is prefix of data packets, fixed. 10 is data lenght, fixed. 00 is address code, revisable. 84 is command code, fixed. 00 00 20 08 the four red bytes are the X axis returned angle value in compact BCD code. the high order 0 of first byte is sign bit(0: positive; 1: negative), 00 0 are three digit integer value, 20 08 are four decimal digit. other axis data analysis method is similar. the angle is +000.2008 deg by analizing. 10 00 25 28, the four blue bytes are Y axis returned angle value, analysis method is similar to X axis 10 35 00 80, the four green bytes are internal temperature value, analysis method is similar to X axis. DE : check sum, hexadecimal sum of all data, exclude prefix 68, if surpass one byte, pick low-order.
0X05	Setting relative/absolute ZERO: Can set the current angle to Zero degree, relative measurement, can also be set to absolute ex-factory zero, power off save E.g: 68 05 00 05 00 0A	Data domain (1byte) 00: absolute ZERO 01: relative ZERO
0X85	Sensor answer reply command E.g: 68 05 00 85 00 8A	Data domain (1byte) Data domain in the number means the sensor response results 00 : Setting successfully FF : Setting failure

2.COMMAND word analysis

0X0B	Setting communication rate E.g: 68 05 00 0B 03 13 The command setting is effective after power off then restart (power off with save function)	Data domain (1byte) Baud rate: 00 means 2400 01 means 4800 02 means 9600 (default) 04 means 38400 05 means 115200
0X8B	Sensor answer reply command E.G: 68 05 00 8B 90	Data domain (1byte) Data domain in the number means the sensor response results 00 Success FF Failure
OXOC	Setting sensor output mode Response rule; Need upper computer send reading angle command , the sensor answer the corresponding angle Automatic output rule: The sensor with power on can Automatically output X angle , The output frequency base on what be setted, if you need output High frequency, please set baud rate as 115200 (Power off with save function) E.g: 68 05 00 0C 00 11	 Data domain (1byte) Answer reply mode (Factory default) 5Hz Automatical output mode 15Hz Automatical output mode 25Hz Automatical output mode 35Hz Automatical output mode 50Hz Automatical output mode
0X8C	The sensor answer reply command E.g: 68 05 00 8C 00 91	Data domain (1byte) Data domain in the number means the sensor response results 00 Success FF Failure
OXOF	Setting module address command The sensor default address is 00, 1, such as a plurality of sensor to be connected with a bus cable, e.g RS485.requires each sensor is set to a different address, in order to achieve control and response angle . 2, If successfully changed the new address, follow all of the commands and responding Packet address code has to switch to the new address code which already changed then to be effective, otherwise the sensor will not respond to	Data domain (1byte) XX Module address Address from 00 to EF range Note: All products have a common address :FF, If forget the address what has been set during operation , can use FF address to operate the product can still normally respond

	commands.(power off with save function) E.g: 68 05 00 0F 01 15 Setting the address to 01 68 05 FF 0F 00 13 Use the common address to reset address to 00	
0X8F	The sensor answer reply command E.g: 68 05 00 8F 94	Data domain(1byte), Data domain in the number means the sensor response results 00 Success FF Failure
OXOD	Query relative/absolute ZERO Used to query the sensor current ZERO mode is relative ZERO or absolute ZERO E.g : 68 04 00 0D 11	Data domain(0byte) No data domain commands
0X8D	The sensor answer reply command E.g: 68 05 00 8D 00 92	Data domain (1byte), Data domain in the number means the sensor response results 00 Absolute ZERO 01 Relative ZERO

RION PRODUCT MODBUS PROTOCOL

Note, please read the following items carefully before use:

1> The MODBUS protocol specifies that the time between two data frames should be at least greater than 3.5 bytes (for example, at 9600 baud rate, the time is $3.5 \times (1/9600) \times 11 = 0.004$ s) For the margin, the shortening time of this sensor is increased to 10ms, so please keep at least 10ms time interval between each data frame.

The host sends the command--10ms idle--the slave responds to the command--10ms idle--the host sends the command

2> The content of the broadcast address ---- 0 is specified in the MODBUS protocol. The sensor can also accept the content of the broadcast address, but it will not reply (except for the function of reading the address code). Therefore, the broadcast address 0 can be used for the following purposes, for reference only.

1. Set the addresses of all tilt sensors of this model mounted on the bus to a certain address.

2. Set all the tilt sensors of this model mounted on the bus to relative / absolute zero.

3. Test this type of sensor on the entire bus, that is, the host sends a 0 address query angle command to the bus, and the communication indicator flashes when the communication is normal.

3> In order to improve the reliability of the system, set the address command and set the absolute / relative command, set the baud rate, these three commands must be sent twice in order to be effective. "Two consecutive transmissions" means that both transmissions are successful (the slave has a reply every time), and the two questions and answers must be consecutive before and after, that is, the master cannot insert other data frames in the middle of the two questions and answers, otherwise, this kind of command It will be locked, and the setting process is as follows:

Send setting address command-wait for setting success command sent by slave-(no other commands can appear) Send setting address command again-wait for setting success command sent by slave-modification successful.

1. Data frame format

RTU mode

Communication parameter: Baud rate 9600 bps (factory default)

Data frame: 1 start bit, 8 data bits, even parity, 1 stop bit

2. Read angle data

Modbus function code 03H

Host query command:		Slave response:		
Sensor address	01H	Sensor address	01	1H
Function code	03H	Function code	03	ЗН
Access	00H	Data length 8 bits	04	λH
register first address	02H	Data word 1 high 8 bits	50H	
Data length	00H	Data word 1 low 8 bits	46H	V ovio doto
4 words	05H	Data word 2 high 8 bits	00H	X axis data
CRC	2409H	Data word 2 low 8 bits	00H	
		Data word 3 high 8 bits	23H	
		Data word 3 low 8 bits	20H	V avia data
		Data word 4 high 8 bits	00H	Y axis data
		Data word 4 low 8 bits	00H	
		Data word 5 high 8 bits	03	Temperatur
		Data word 5 low 8 bits	57	e

CRC									F	A0EH				
Application example of reading measurement data command1:														
Host	sendir	ng				01H	03H	00H	02⊢	I 00	H ()5H	24H	09H
Slave	e respo	onse												
01 H	03 H	0A H	50 H	46 H	00 H	00 H	23 H	20 H	00 H	00 H	03 H	57 H	FAH	0EH

Note: The data field of the slave reply frame is 50H, 46H, 00H, 00H, 23H, 20H, 00H, 00H, 03H, 57H

The X axis is the first 1-4 bytes of the data field, and the Y axis is the fifth to eighth bytes of the data field, with the low byte first. The angle is expressed in points,One point corresponds to 0.0001° , and $0.0001 \times$ (points-offset) is the angle. If the measuring range is $\pm 10^{\circ}$, the total number of points is 100000 points. So 0 corresponds to -10° , 200000 corresponds to $+ 10^{\circ}$, and 100000 corresponds to 0° .

Take the above data frame as an example: The angle conversion process is as follows:

1) Get the current angle points. Note that the low byte is first, the X axis is 4650H, and the Y axis is 2023H.

2) Convert to decimal, X axis: 4650H \rightarrow 18000, Y axis: 2023H \rightarrow 8227.

3) Subtract the offset of 100000 (Note: This value is an amount related to the measurement range, multiply the measurement range value by 10000, if the offset of the measurement range $\pm 10^{\circ}$ is 10 * 10000, the measurement range is an offset of ± 30 degrees The displacement is 30 * 10000). X evic: 18000, 100000 = 82000, X evic: 8227, 100000 = 0,17728

* 10000), X axis: 18000-100000=-82000, Y axis: 8227-100000 = -9.1773°.

4) Get the final angle, X axis: -82000×0.00001= -8.2000°, Y axis: -1773×0.001=-1.773°.

The temperature is the 9-10th byte of the data field.

Analysis:

The upper four bits of the ninth byte are the sign bits, 1: negative temperature 0: positive temperature

The lower four bits of the ninth byte are tens, the upper four bits of the tenth byte are ones, and the lower four bits of the tenth byte are tenth;

If the slave returns 03H, 57H temperature is: 35.7 °C.

3.Set the sensor relative / absolute zero:

Modbus function code 06H

Set relative/absolute	e ZERO commands	Slave response :	
Sensor address	01H	Sensor address	01H
Function code	06H	Function code	06H
Access register	00H	Register	00H
first address	10H	Address	10H
If the word is	00 H	If the word is non-zero, it is a	00H
relative zero point, and if it is zero, it is an absolute zero point	elative zero point, and if it is zero, it is an absolute FFH / 00H and if Relative/ absolute an a		FFH / 00H Relative/ absolute
CRC	C84FH/ 880FH	CRC	C84FH/ 880FH

Commands must be sent twice in succession to be effective

Application Example of Set Zero Command:										
Host sending	g		01 H	06 H	00 H	10 H	00 H	FFH	C8H	4FH
Slave respo	Slave response									
01 H	06 H		10 H	00	Н	FFH	C	н	4FH	

Note: 0010 is the register address. This register controls the sensor output to be relative zero or absolute zero. If it is non-zero (as in the above example, 00FFH is written), the output is relative

zero. Conversely, if it is zero (change the 5th and 6th bytes to 00H), it is an absolute zero. The last two bytes are the CRC checksum.

set sensor address co	de commands :	Slave response :							
Sensor address	01H	Sensor address	01H						
Function code	06H	Function code	06H						
Address	00H	Register	00H						
	11H	Address	11H						
Concerney address	00 H		00 H						
Sensor new address	04H	Sensor new address	04H						
CRC	D80C	CRC	D80C						
Commands must be sent twice in succession to be effective									
Application example of command to set sensor address:									

4.Set sensor address : (sensor address default is 1)

Application example of command to set sensor address:											
Host sending			01 H	06 H	00 H	11 H	00 H	04H	D8H	0CH	
Slave respo	Slave response										
01 H	06 H	00 H		11 H (00 H		D8	н	0CH	

Note: 0011H is the register address, this register controls the sensor address. In the above example, the address of the sensor is changed to 0004H, and the last two bytes are the CRC checksum.

5.Set sensor baud rate : (factory default 9600bps)

Set sensor baud r	ate code commands :	Slave response :					
Sensor address	01H	Sensor address	01H				
Function code	06H	Function code	06H				
A status s s	00H	Register	00H				
Address	12H	Address	12H				
Sensor baud	00H	Sensor baud rate	00H				
rate	XX	Sensor baud rate	XX				
CRC	CRC LH	CRC	CRC LH				

XX : A0H:4800 A1H:9600 A2H:19200 A3H:38400 A4H:115200

Commands must be sent twice in succession to be effective

Application example of Set sensor baud rate command:										
Host sending		01 H	06 H	00 H	12 H	00 H	A2H	A8H	76H	
Salve response										
01 H	06 H	00 H		12 H	00	Н	A2H	A8	вн	76H

Note: 0012H is the register address, which controls the sensor baud rate. In the above example, the baud rate of the sensor is set to 19200, and the last two bytes are the CRC checksum.

set Read sensor	address commands :	Slave response :								
Sensor address	00H	Sensor address	01H							
Function code	42H	Function code	42H							
Address	00H 11H	Return data length	02H							
Data langth	00H	Sensor address	01H							
Data length	01H	Sensor address	01H							
CRC	CRC LH	CRC	CRC LH							

6.Read sensor address code :

Application example of setting Read sensor address command:											
Host sending			00 H	42 H	00 H	11 H	00 H	01H	E9H	D1H	
Slave respor	Slave response										
01 H	42 H	02 H	(01 H	01 H		6CH	28	Η		

7.Set sensor communication character format: (factory default is even parity)

Set sensor co format code com	mmunication character mands:	Slave response :	
Sensor address	01H	Sensor address	01H
Function code	06H	Function code	06H
Address	00H	Register Address	00H
	09H	Address	09H
Sensor	00H		00H
changes communicatio n character format	01H	Sensor new forma	01H
CRC	9808	CRC	9808

Application Example of Set sensor communication character format Command:										
Host sending	g		01 H	06 H	00 H	09 H	00 H	01H	98H	08H
Slave response										
01 H	06 H	00 H	09 H		00 H		01H	98	Н	08H

The above example is to set the byte format to: 1 start bit + 8 data bits without parity + 1 stop bit

It is valid after power on again. The factory default is 1 start bit + 8 data bits, even parity + 1 stop bit

Note: 0009 is the register address, which controls the character format of the sensor communication.

0000H: 1 start bit + 8 data bits, even parity + 1 stop bit

0001H: 1 start bit + 8 data bits without checksum + 1 stop bit

- Add: Block 1, COFCO(FUAN) Robotics Industrial Park, Da Yang Road No. 90, Fuyong
 Distict, Shenzhen City, China
 Tel: (86) 755-29657137 (86) 755-29761269
 Fax: (86) 755-29123494
 E-mail: sales@rion-tech.net
- Web: www.rionsystem.com/en/